Three questions from unknown Oxford Entrance Paper (prior to 1996)

- **B6.** Let G be the set of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c, d are real numbers such that ad bc = 1. Let t(A) = a + d.
 - (i) Let $A, B \in G$. Show that

$$t(AB) + t(AB^{-1}) = t(A)t(B).$$

(ii) Let $A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and let x = t(A).

By writing $A^n = A^{n-1}A$ for $n \ge 2$ and using part (i) show that $t(A^n) = xt(A^{n-1}) - t(A^{n-2})$ for $n \ge 2$.

(iii) By using induction (or otherwise) prove that

$$t(A^n) = \left(\frac{x + \sqrt{x^2 - 4}}{2}\right)^n + \left(\frac{x - \sqrt{x^2 - 4}}{2}\right)^n$$

C11. Let a > 0 and let $f(x) = \frac{x^2 + a^2}{x^2 - ax}$.

- (i) Find the turning points of the graph of f(x) and find the values of f(x) at these turning points.
- (ii) Find the asymptotes of the graph.
- (iii) Sketch the graph, marking the features you have found in (i) and (ii). Your sketch should make clear how the graph approaches the asymptotes.

C12. Let $f(x) = e^{2x+x^2}$

(i) Show that for small values of x, f(x) can be approximated by $1+2x+3x^2+\frac{10}{3}x^3$, neglecting higher powers of x.

(ii) Let $g(x) = 1 + 2x + 3x^2$, and show that $f(x) - g(x) = \frac{10}{3}x^3(1 + \sum_{n=1}^{\infty} a_n x^n)$ where $a_n \ge 0$ for all n.

- (iii) Given that f(0.1) g(0.1) < 0.004, show that if $0 \le x \le 0.1$ then $f(x) g(x) \le 4x^3$.
- (iv) Prove that $\int_0^{0.1} g(x) dx$ differs from $\int_0^{0.1} f(x) dx$ by at most 10^{-4} .